Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 600: 120494, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744446

RESUMO

In this study the concentration effect of 2-Hydroxypropyl-beta-cyclodextrin (HP-ßCyD) on oral drug absorption of the BCS class II drugs Danazol (DNZ) and Albendazole (ABZ) was evaluated. In vitro permeation of solutions and suspension systems was compared with their in vivo intestinal absorption in rats and their in vitro-in vivo correlation assessed. In solutions excess amounts of HP-ßCyD decreased both in vitro permeation and in vivo absorption due to the decrease in free drug concentration, as expected. However, in suspension systems the contribution of HP-ßCyD by drug complexation was found to be altered by further rate limiting steps for membrane permeation and intestinal absorption of each drug. In vitro permeation of DNZ was rate-limited by the diffusion into the unstirred water layer (UWL), while that of ABZ was rate-limited by the permeation across the lipid membrane. For the in vivo intestinal absorption, both drugs were rate-limited by the dissolution rate from undissolved drug. These differences in the rate-limiting process were considered to cause discrepancies in the result of in vitro and in vivo assays. In conclusion, it is quite important to understand the rate limiting process of oral absorption of the target drug for designing oral liquid formulations containing cyclodextrins.


Assuntos
Ciclodextrinas , Preparações Farmacêuticas , 2-Hidroxipropil-beta-Ciclodextrina , Administração Oral , Animais , Absorção Intestinal , Permeabilidade , Ratos , Solubilidade
2.
Eur J Pharm Sci ; 154: 105532, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871215

RESUMO

It is our hypothesis that the presence of an absorptive sink for in-vitro dissolution experiments is decisive to predict extent and duration of super-saturation of low soluble drugs in formulations expected to increase oral absorption, often called enabling formulations. Combined dissolution-/permeation-testing may provide such absorptive sink. Commonly used in-vitro dissolution-/permeation tools have a limited interfacial area-to-donor-volume-ratio (A/V), far below the physiological one which is estimated for humans. In consequence, super-saturation is expected to be more pronounced and thus precipitation to occur more readily in these models as compared to the in-vivo situation. In the current study, a PermeaLoop™ prototype a of a novel in-vitro dissolution-/permeation-tool with a substantially larger A/V was employed to investigate the dissolution and permeation behaviour of model formulations of dipyridamole containing fumaric acid as modifier of the micro-environmental pH. After identifying the most suitable experimental conditions in terms of donor- and acceptor pH and composition, dose, flow-rate and sampling intervals, both the dissolution and the permeation were simultaneously assessed over time and the extent and duration of super-saturation monitored. The importance of biomimetic media in the donor was revealed not only in terms of increasing the dissolution but also the permeation. The formulations were ranked in terms of their performance (cumulative amount permeated). As a result the data generated by PermeaLoop experiments showed for the same formulations a superior correlation with in rat bioavailability data than obtained from a traditional side-by-side Dissolution-/Permeation-system with a Caco-2-cell membrane (D/P-system). The insights into the effects of solubilisers and pH conditions gained in the present study contribute to an improved mechanistic understanding of dynamic dissolution/permeation behaviour of weakly basic drugs and their enabling formulations. Challenges with the current PermeaLoop prototype are still to be solved, as dispersed drug still tends to get stuck inside the system, but gained experiences are helpful for the improvement of the design.


Assuntos
Dipiridamol , Absorção Intestinal , Administração Oral , Animais , Células CACO-2 , Dipiridamol/farmacocinética , Composição de Medicamentos , Humanos , Permeabilidade , Ratos , Solubilidade
3.
Int J Pharm ; 456(1): 58-64, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23994013

RESUMO

For moisture activated dry granulation (MADG), microcrystalline cellulose (MCC) or silicon dioxide is recommended for the moisture absorption stage. The aim of this study was to assess the suitability of alternative excipients as moisture absorbents with regard to the disintegration mechanism of resulting lactose based placebo formulations. Beside high and low moisture MCC grades, the additions of magnesium aluminometasilicate (MAMS), pregelatinized starch (S1500), crospovidone (Kollidon CL) and carmellose calcium (ECG 505) were evaluated. High shear granulation (HSG) was conducted as a reference process. The overall disintegration time of all tablets produced by MADG was significantly faster whereas hardness yield and mass-variability were equal or superior compared to the HSG process. Powder wettability of the different moisture absorbents was identified to be a key driver for rapid disintegration, whereas tablet porosity had only a minor influence on the target hardness of the tablets.


Assuntos
Compostos de Alumínio/química , Excipientes/química , Compostos de Magnésio/química , Polímeros/química , Silicatos/química , Química Farmacêutica , Porosidade , Comprimidos , Resistência à Tração , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...